

La Internet de las cosas

Wilson Peres UAM (A) Sesión VIII

Contenido

- ¿Qué es la loT?
- Uso a nivel sectorial
- Temas técnicos
- Decisiones micro

¿Qué es loT?

- IoT implica la capacidad de que cosas y personas interactúen remotamente a través de Internet en cualquier lugar y tiempo, gracias a la convergencia de tecnologías.
- UIT: Una "infraestructura global para la sociedad de la información, que habilita servicios avanzados mediante la interconexión de entes físicos y virtuales, con base en TIC interoperables, existentes y en desarrollo."

La tercera ola en el desarrollo de Internet

- En los 1990, la Internet fija conectó a mil millones de usuarios mediante PC.
- En los 2000, la Internet móvil conectó a 2 mil millones de usuarios mediante teléfonos inteligentes (en camino a conectar a 6 mil millones)
- Se espera que loT conecte 28 mil millones de "cosas" a Internet hacia 2020, desde bienes de consumo personal (wearables) como relojes inteligentes, hasta automóviles, equipos para el hogar y maquinaria industrial.

Por lo tanto,

- De Internet de la cosas (M2M) a Internet de todo.
- Internet de las cosas es una visión expandida y comprehensiva de Internet.
- El poder y el beneficio de Internet realmente surgen al combinar cosas con gentes, lugares y sistemas de información.

Uso a nivel sectorial

Modelos de uso

- Gestión. Información para mejorar la utilización de un activo.
- Rentabilización. Cobrar por el uso incremental de un activo.
- Operación. Usar un activo para controlar su contexto.
- Extensión. Proveer información y servicios digitales adicionales mediante la operación de un activo.

Sectores afectados

- Bienes de consumo personal (wearables) conectados
- Automóviles conectados
- Hogares conectados
- Salud digital
- Ciudades conectadas
- Internet industrial

Hogares conectados

- En 2014, Samsung esperaba que el mercado mundial de artefactos inteligentes para el hogar alcanzaría a 15 mil millones de dólares en 2015, duplicando el monto de 2013.
- Ese mercado sería liderado por Estados Unidos, el Reino Unido, Australia y China.

Cuidado de la salud

Monitores infantiles

 Envían información en tiempo real sobre la respiración, la temperatura de la piel, la posición al dormir y el nivel de actividad de un bebé.

Pañales

 Analizan la orina del paciente para medir los niveles de hidratación e identificar signos de infecciones en las vías urinarias. Los datos se traducen en un QR en el frente del pañal, el que puede ser escaneado y enviado a un smartphone.

Verificador de inyecciones de insulina

 Un dispositivo en la jeringa transmite datos sobre las inyecciones que recibe un paciente.

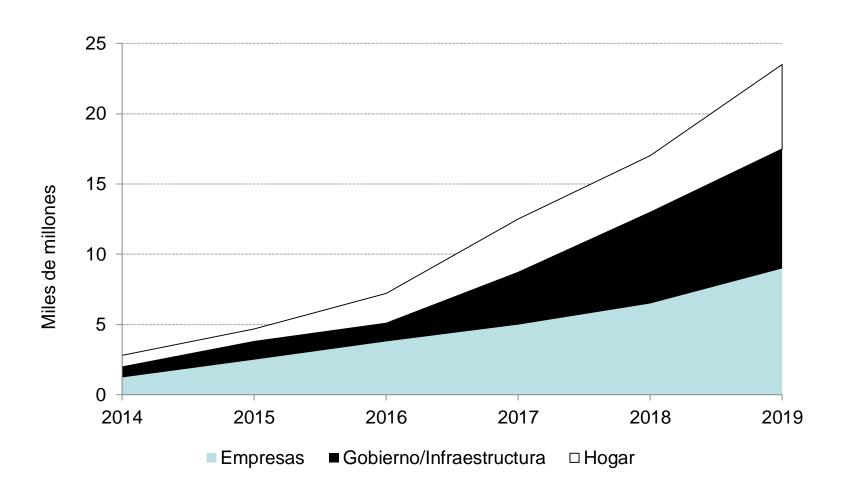
Control de píldoras

 Una píldora incluye un sensor que verifica si el paciente tomó el medicamento a tiempo. Cuando es expuesto a los fluidos estomacales, envía una señal a otro sensor en la piel del paciente, el que la reenvía a un smartphone.

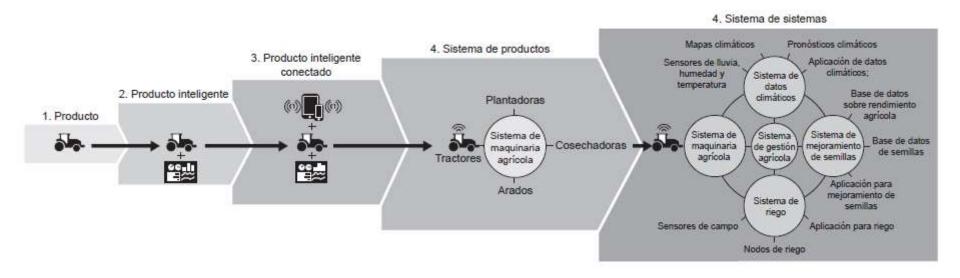
Fuente: Laura Hamilton "4 Ways The Internet of Things Is Transforming Healthcare", Forbes Women, http://www.forbes.com/sites/85broads/2014/03/26/4-ways-the-internet-of-things-is-transforming-healthcare/

Ciudades conectadas

- Estados Unidos lidera en la adopción de tecnologías de medición inteligente de energía eléctrica (50% de penetración en 150 millones puntos de medición).
- La American Recovery and Restoration Act de 2009 apoyó con 3 mil millones de dólares el desarrollo de tecnologías de redes de energía inteligentes (smart grids).
- En Europa, la meta es que 80% de los hogares tengan medidores inteligentes hacia 2020.
- Medidores inteligentes y nuevas arquitecturas de redes de energía son las bases para mayor conectividad en las ciudades, incluyendo sistemas inteligentes de iluminación (LED), parquímetros, luces de tránsito y recarga de vehículos eléctricos, entre otros.


Internet industrial

- Es una revolución industrial: la maquinaria se digitaliza y conecta; se desarrollan redes entre máquinas, personas e Internet, creando nuevos ecosistemas.
- Aunque en etapas iniciales, se espera que Internet de la cosas alcance niveles de 2 millones de millones (trillion) de dólares hacia 2020: abarcando desde transporte hasta cuidado de la salud y hasta petróleo y gas.
- En especial, afectará tres áreas:
 - Construcción automatizada
 - Manufactura
 - Uso de recursos.
- Las fábricas usarán la Internet de las cosas para aumentar la eficiencia energética, el monitoreo y control de activos físicos, y la productividad.


Grandes datos industriales

- La manufactura es el sector que acumula más datos (2 exabytes de nuevos datos en 2010)
- Creciente presencia de artefactos y equipos avanzados (Internet industrial).
- Software avanzado tipo historian provee mucho mayor rapidez de lectura y escritura, y verdadero uso de datos en tiempo real.
- Jeff Immelt (CEO de General Electric): "Toda empresa industrial se volverá una empresa de software".

IoT: dispositivos según sector 2014-2019

Hacia la Internet del consumo y la producción

Historians

- Un historian operativo es un software de base de datos que accede o maneja datos de procesos.
- Se usa para registrar tendencias e información histórica sobre procesos industrial para su futuro uso.
- Captura información de gestión de planta sobre la situación de la producción, monitoreo de desempeño, control de calidad, seguimiento (*tracking*) y entrega de producto mediante capacidades avanzadas de captura, manejo y visualización de datos.
- Los *historians* operativos son similares a los *historians* empresariales, pero son usados por ingenieros en la planta, no por administradores.

Fuente: Proficy Historian, GE Intelligent Platforms, 2012.

Temas técnicos

La base tecnológica

- Computación ubicua.
- Radio-frequency identification (RFID).
- Sistemas ciber-físicos.
- Redes inalámbricas de sensores.
- Comunicaciones de máquina a máquina (M2M).

Algunos tecnicismos

- No se necesitan protocolos robustos para IoT por las mínimas capacidades de procesamiento, memoria y comunicaciones requeridas por muchos artefactos sencillos.
- Tampoco son posibles, por los costos fijos que implican.
- Áreas donde se acumulan costos y que obligan a una nueva manera de abordar la IoT:
 - Hardware y software
 - Supervisión y gestión
 - Seguridad
- Agregar IPv6 a un aparato puede costar hasta 50 dólares; agregar un sensor o aparato a la IoT cerca de 1 dólar.
- Los protocolos de Internet (IP) están orientados al emisor; IoT incluye muchos elementos que están orientados al receptor (polen). Los elementos inteligentes se aplican solo en el receptor.

Fuente: daCosta (2013).

Estructura de la red

- 3 tipos de funciones
 - Artefactos terminales
 - Nodos de propagación que proveen transporte y entradas a la Internet tradicional
 - Integradores que proveen análisis, control e interfaces humanas a la IoT.
- Los protocolos inteligentes residen en los nodos de propagación.

Contenido del tráfico

- Chirps son pequeños paquetes de datos que son los ladrillos fundamentales de la arquitectura de la IoT.
- Chirps
 - Implican costos fijos ínfimos
 - Por diseño, son individualmente prescindibles
 - No incluyen protocolos de retransmisión y reconocimiento.

Decisiones micro

"How SCP are transforming competition"

- loT es resultado del creciente número de productos inteligentes conectados (SCP) y resalta las nuevas oportunidades que abren.
- Los SCP son diferentes, no por estar conectados a Internet, sino por el cambio en la naturaleza de "cosas."
- Tres elementos clave
 - Base física
 - Inteligencia (sensores, microprocesadores, almacenamiento de datos, etc.)
 - Conectividad.
- SCP y los datos que generan están iniciando una nueva era de la competencia.

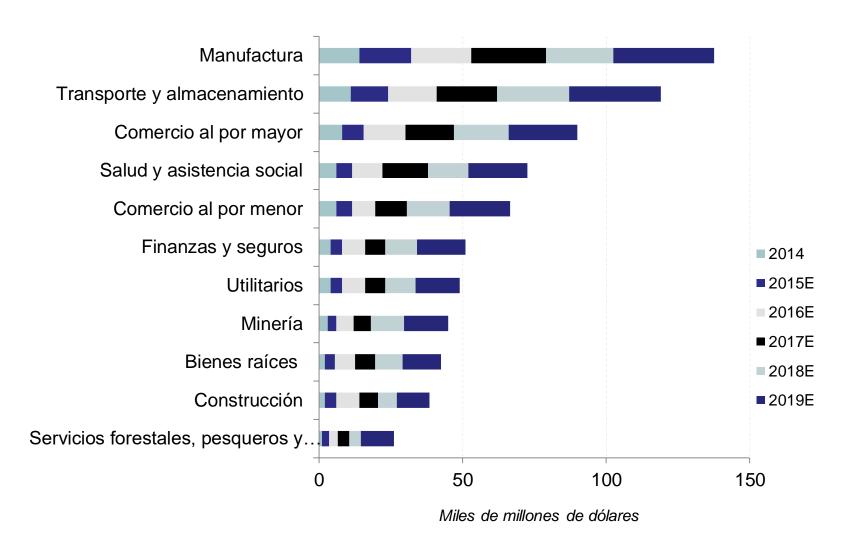
Fuente: Porter y Heppelmann 2014.

Tres olas de la competencia basada en TIC

- 1960s y 1970s: actividades individuales automatizadas en la cadena de valor. Estandardización de procesos entre empresas.
- 1980s y 1990s: el aumento de Internet posibilitó la coordinación e integración entre actividades individuales; entre distintas geografías y con proveedores, canales y clientes. Cadenas globales de suministro.
- Hoy, las TIC son parte integral del propio producto (sensores, nube del producto, conectividad, software, procesadores). Esto traerá otro ola de aumento de productividad en las cadenas de valor.

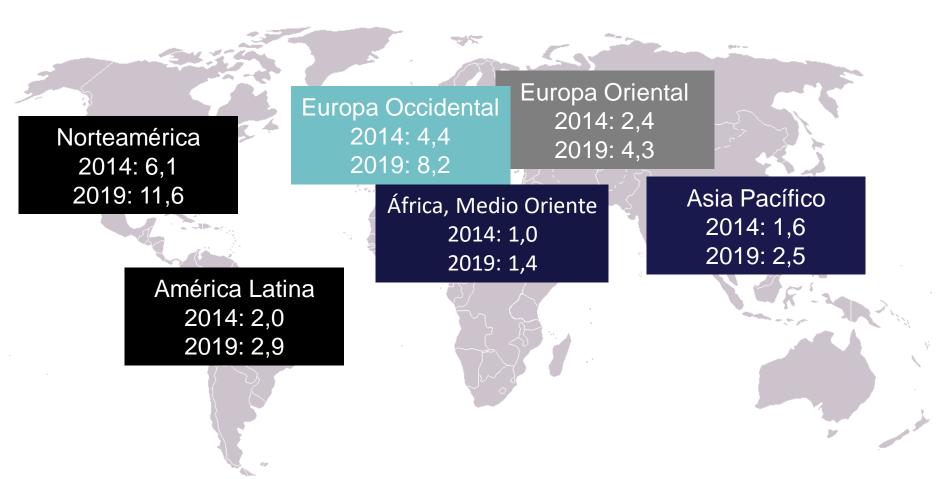
Productos inteligentes conectados

- Tres capas en el technology stack: producto, conectividad, nube del producto.
- Inteligencia y conectividad posibilitan un nuevo conjunto de funciones del producto: monitoreo, control, optimización y autonomía. Cada una se basa en la precedente.
- Siguen operando las cinco fuerzas tradicionales que moldean la competencia.

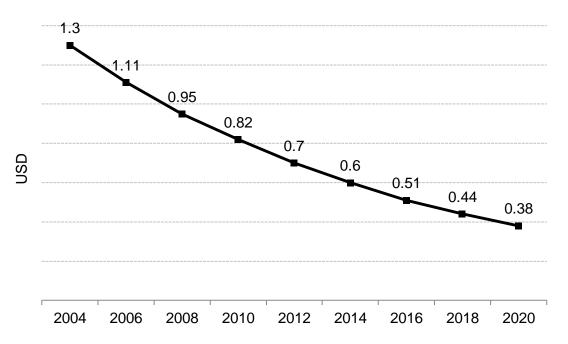

Sistemas de sistemas

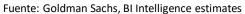
- Los SCP no solo cambian la competencia en un sector, sino que expanden la propia definición del sector.
- La base de la competencia pasa de la funcionalidad de un producto individual al desempeño de un sistema de productos más amplio, en el que la empresa es solo un actor.
- Los límites de un sector se expanden de un sistema de productos a un sistema de sistemas: edificios, hogares o ciudades inteligentes.

Estructura de mercado

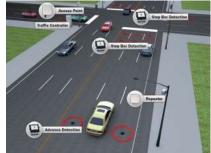

- Crecientes barreras a la entrada y ventajas del primer entrante: en muchas industrias aumentará la concentración.
- Mayores presiones hacia la concentración por las ventajas de los sectores cuyas límites se expanden (empresas multiproducto).
- En otros casos (sin productos obsoletos, sin productos ni beneficios pasados a proteger), habrá nuevas entradas, incluso de empresas que no tienen producción física.

Inversiones en soluciones loT según sector, 2014-2019

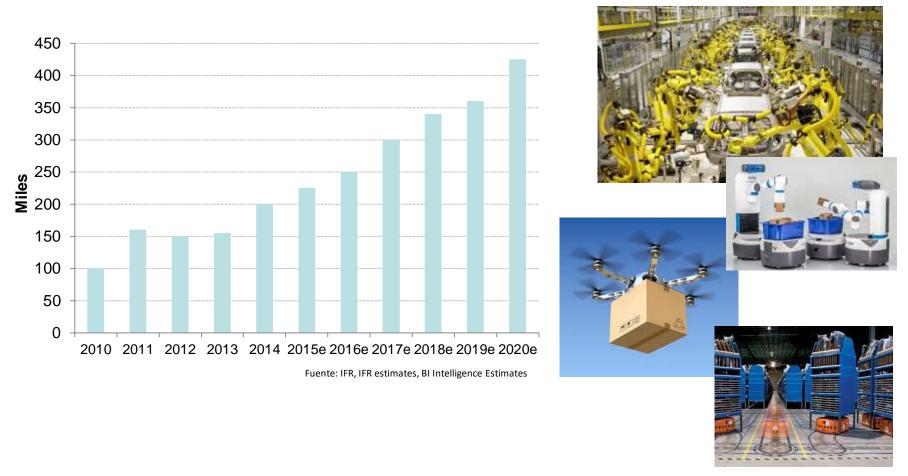


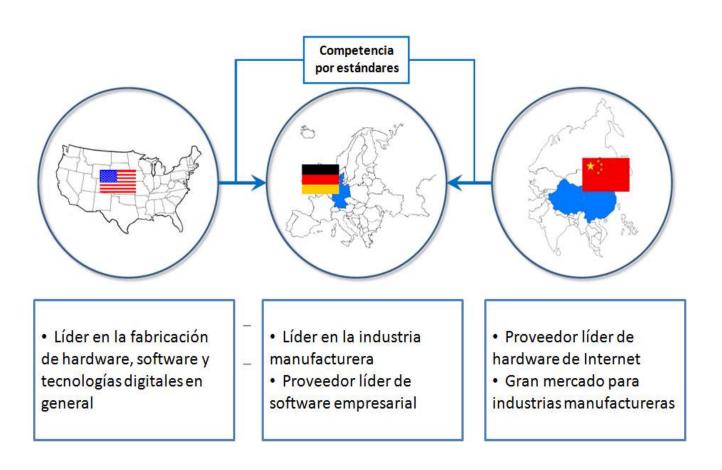

IoT: la nueva brecha digital

Cantidad de sensores por habitante en 2014



Evolución del precio de los sensores





Instalaciones de robots industriales a nivel global

Amazon ahorra 900 millones de dólares al año usando robots de almacén

Competencia y colaboración en estándares de la Internet industrial

Puntos a tener en cuenta

- El peso de China
 - Lidera el registro de patentes de IoT.
 - Tiene 40% de las conexiones M2M: más que EUA+Japón.
- Buenos trabajos de ProMéxico, SE (2014)
 - Mapa de ruta para IoT (puntos 2.1 y 3.1).
 - Mapa de ruta tecnológico. Tecnologías de la información para la manufactura avanzada.